|本期目录/Table of Contents|

[1]刘伟红,林怡雪,宋立新,等.柔性碳基纳米纤维膜的研究进展[J].丝绸,2020,57(12):121101.
 LIU Weihong,LI Yixue,SONG Lixin,et al.Research progress of flexible carbon based nanofibers films[J].Journal of Silk,2020,57(12):121101.
点击复制

柔性碳基纳米纤维膜的研究进展(PDF)

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
57
期数:
2020年12期
页码:
121101
栏目:
研究与技术
出版日期:
2020-12-20

文章信息/Info

Title:
Research progress of flexible carbon based nanofibers films
文章编号:
1001-7003(2020)12-0000-00
作者:
刘伟红林怡雪宋立新熊 杰
浙江理工大学 纺织科学与工程学院(国际丝绸学院
Author(s):
LIU Weihong LI Yixue SONG Lixin XIONG Jie
College of Textile Science and Engineering (International Institute of Silk) , Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
碳纳米纤维膜柔性掺杂增韧机理应用
Keywords:
carbon nanofiber membrane flexibility doping toughening mechanism application
分类号:
TS102.527.2;TQ342.74
doi:
-
文献标志码:
A
摘要:
碳纳米纤维膜具有优良的导电性、热稳定性、低密度和抗化学腐蚀性能,在能源和环境等领域具有广泛的应用。静电纺丝是一种简单而有效制备纳米纤维膜的技术,柔性碳纳米纤维膜受到越来越多的关注。然而,静电纺碳纳米纤维膜往往是脆性的,限制了碳纳米纤维膜的应用。文章综述了静电纺丝柔性碳纳米纤维膜的研究进展,重点叙述了柔性碳纳米纤维膜的性能和柔性机理,归纳颗粒增韧、相变增韧和封端增韧三种柔性机理,为进一步研究和发展柔性碳纳米纤维膜提供参考依据。此外,提高碳纳米纤维膜的柔性对于柔性器件和可穿戴纺织品的发展具有重要意义。
Abstract:
Carbon nanofiber membranes have excellent electrical conductivity, thermal stability, low density and chemical corrosion resistance, which are widely used in energy and environment fields. Electrospinning is a simple and effective technology for preparing nanofiber membranes. Flexible carbon nanofiber membranes have attracted more and more attention. However, electrospun carbon nanofiber membranes are often brittle, which limits the application of carbon nanofiber membranes. In this paper, the research progress of electrospun flexible carbon nanofiber membranes is reviewed, and the properties and flexible mechanism of flexible carbon nanofiber membranes are narrated. Besides, three flexible mechanisms, namely particle toughening, phase transformation toughening and end-capping toughening, are summarized to provid e reference for further research and development of flexible carbon nanofiber membranes. In addition, improving the flexibility of carbon nanofiber membrane is of great significance to the development of flexible devices and wearable textiles.

参考文献/References:

[1] KIM Y A, HAYASHI T, ENDO M, et a1. Carbon Nano Fibers[M]. Berlin:Springer, 2013: 233-262.
[2]王彦博, 聂鹏飞, 刘建允. 超薄MnOx修饰多孔碳纳米纤维及其电容脱盐[J]. 复合材料学报, 2019, 36(3): 764-769.
WANG Yanbo, NIE Pengfei, LIU Jianyun. Ultrathin MnOx-modified porous carbon fiber for capacitive desalination[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 764-769.
[3]闫涛, 潘志娟. 静电纺纳米纤维柔性应变传感器的研究现状[J]. 纺织学报, 2018, 39(12): 152-157.
YAN Tao, PAN Zhijuan. Research status of flexible strain sensor based on electrospun nanofibers[J]. Journal of Textile Research, 2018, 39(12): 152-157.
[4]李璐璐, 梁欣宇, 森巴特?特尼斯别克, 等. 油水分离中静电纺纳米纤维膜应用的现状与展望[J]. 现代化工, 2019, 39(6): 59-64.
LI Lulu, LIANG Xinyu, TENISIBIEKE S, et al. Current situation and prospects of application of electrospun nanofiber membrane in oil- water separation[J]. Modern Chemical Industry, 2019, 39(6): 59-64.
[5]吴薇, 陈思, 郭虹. 空气过滤用静电纺PAN纳米纤维膜的制备及性能研究[J]. 国际纺织导报, 2019, 47(5): 1-4.
WU Wei, CHEN Si, GUO Hong. Study on preparation and properties of electrospinning PAN nanofiber membrane for air filtration[J]. Melliand China, 2019, 47(5): 1-4.
[6]陈文杰, 陈曼, 周向阳, 等. 静电纺丝纳米纤维催化剂在环境治理中的应用进展[J]. 化工新型材料, 2019, 47(6): 44-48.
CHEN Wenjie, CHEN Man, ZHOU Xiangyang, et al. Progress of the electrospining nanofiber catalyst in environmental treatment [J]. New Chemical Materials, 2019, 47(6): 44-48.
[7]梁志奇, 崔向旭, 张志明, 等. 电纺纳米纤维膜荧光传感器在重金属检测中的应用[J]. 现代化工, 2020, 40(2): 226-230.
LIANG Zhiqi, CUI Xiangxu, ZHANG Zhiming, et al. Application of electrospun nanofiber membrane fluorescence sensor in the detection of heavy metals [J]. Modern Chemical Industry, 2020, 40(2): 226-230.
[8]关磊. 氮气氛直流电弧放电制备新型碳纳米材料[D]. 天津:天津大学, 2010.
GUAN Lei. Preparation of Novel Carbon Nanomaterials by DC Arc Discharge under Nitrogen Atmosphere[D]. Tianjin:Tianjin University, 2010.
[9]张虎. 铜基体上化学气相沉积法原位生长碳纳米材料的研究[D]. 天津:天津大学, 2012.
ZHANG Hu. In Situ Growth of Carbon Nano Materials on Copper Substrates by Chemical Vapor Deposition[D]. Tianjin:Tianjin University, 2012.
[10]闫明洋, 杨敏, 李红, 等. 原位生长的气相生长碳纤维增强C/C复合材料的制备及其弯曲性能[J]. 无机材料学报, 2018, 33(11): 1161-1166.
YAN Mingyang, YANG Min, LI Hong, et al. Preparation and flexural property of intu vapor grown carbon fibers reinforced C/C composites[J]. Journal of Inorgaic Materials, 2018, 33(11): 1161-1166.
[11]张勇, 唐元洪, 裴立宅, 等. 碳纳米纤维制备的研究进展[J]. 材料导报, 2004, 18(F10): 102-105.
ZHANG Yong, TANG Yuanhong, PEI Lizhai, et al. Research progress on synthesis of carbon nanofibers[J]. Materials Review, 2004, 18(F10): 102-105.
[12] ANTON F. Process and apparatus for preparing artificial threads: US1975504[P]. 1934.10.
[13] RENEKER D H, CHURL L. Nanometre diameter fibers of polymer, produce by electrospinning[J]. Nanotechnology, 1996, 7(3): 216 .
[14]汪心坤, 王建江, 赵芳, 等. 静电纺丝技术制备铁氧体吸波材料的研究现状与进展[J]. 合成材料老化与应用, 2019, 48(5): 127-131.
WANG Xinkun, WANG Jianjiang, ZHAO Fang, et al. Recent advances and prospects in ferrite absorbing materials prepared by electrospinning[J]. Synthetic Materials Aging and Application, 2019, 48(5): 127-131.
[15]刘洪刚, 叶敦菇, 程国安. 等离子体增强热丝化学气相沉积法生长取向金刚石薄膜[J]. 南昌大学学报(理科版), 2000(1): 88-92.
LIU Honggang, YE Dungu, CHENG Guoan. Oriented growth of dlamond film on Si via plasma enhanced hot filament chemical vapor deposition[J]. Journal of Nanchang University (Natural Science), 2000(1): 88-92.
[16]吴凤仪, 王熙, 王一婷, 等. 介孔碳材料的控制合成及其催化性能[J]. 化工设计通讯, 2019, 45(11): 39-40.
WU Fengyi, WANG Xi, WANG Yiting, et al. Control synthesis and catalytic performance of mesoporous carbon materials [J]. Chemical Engineering Design Communications, 2019, 45(11): 39-40.
[17]乔辉, 杨笑, 魏金柱. 碳纳米纤维的制备及应用[J]. 技术与市场, 2010(6): 13-14.
QIAO Hui, YANG Xiao, WEI Jingzhu. Preparation and application of carbon nanofibers[J]. Technology and Market, 2010(6): 13-14.
[18]卢诚. 固相法合成LiFePO4/C正极材料的研究[D]. 山东:山东科技大学, 2011.
LU Cheng. Stuty on Solid-Phase Synthesis of LiFePO4/C Cathode Materials[D]. Shandong:Shandong University of Science and Technology, 2011.
[19]宋立新, 熊杰. 静电纺碳纳米纤维的制备、修饰及应用[J]. 现代纺织技术, 2013,21(3): 55-60.
SONG Lixin, XIONG Jie. Preparation,decoration and application of carbon nanofiber with electrostatic spinning[J]. Advanced Textile Technology, 2013, 21(3): 55-60.
[20]吴志鹏. 柔性自支撑C/MoO2复合纳米纤维膜锂离子电池负极的制备及性能研究[D]. 镇江:江苏科技大学, 2018.
WU Zhipeng. Preparation and Properties of Flexible C/MoO2 Composite Nanofiber Membranes as Binder-Free Anode for Lithium-Ion Batteries[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018.
[21] 时志强, 靳国强, 王静, 等. 柔性自支撑介孔碳纳米纤维的制备及其在超级电容器电极上的应用[J]. 天津工业大学学报, 2017, 36(5): 16-20.
SHI Zhiqiang, JIN Guoqiang, WANG Jing, et al. Preparation of flexible free-standing mesoporous carbon nanofibers and its application in electrodes for supercapacitor[J]. Journal of TianJin Polytechnic University, 2017, 36(5): 16-20.
[22] LIU H, CAO C Y, WEI F F, et al. Flexible macroporous carbon nanofiber film with high oil adsorption capacity[J]. Journal of Materials Chemistry A, 2014, 2(10): 3557.
[23] ZHANG F, YUAN C, ZHU J, et al. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors[J]. Advanced Functional Materials, 2013, 23(31): 3909-3915.
[24] LEE J, JO C, PARK B, et al. Simple fabrication of flexible electrodes with high metal-oxide content: electrospun reduced tungsten oxide/carbon nanofibers for lithium ion battery applications[J]. Nanoscale, 2014, 6(17): 10147.
[25] QI L, SONG L X, ZHAO X F, et al. A facile preparation of flexible alumina/carbon composite nanofibers film[J]. Journal of Nano Research, 2015, 35: 115-127.
[26] ZHAO Q S, XIE H, NING H, et al. Intercalating petroleum asphalt into electrospun ZnO/Carbon nanofibers as enhanced free-standing anode for lithium-ion batteries[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018.
[27] ZHAO B, CAI R, JIANG S, et al. Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries[J]. Electrochimica Acta, 2012, 85: 636-643.
[28] YIN X, XIE X, SONG L, et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells[J]. Journal of Materials Science, 2017, 52(18): 11025-11035.
[29] YIN X, SONG L X, XIE X Y, et al. Preparation of the flexible ZrO2/C composite nanofibrous film via electrospinning[J]. Applied Physics A, 2016,122(7): 678-685.
[30] SONG L, JING W, CHEN J, et al. High reusability and durability of carbon-doped TiO2/carbon nanofibrous film as visible-light-driven photocatalyst[J]. Journal of Materials Science, 2019, 54(5):3795-3804.
[31] SONG L, YIN X, XIE X, et al. Highly flexible TiO2/C nanofibrous film for flexible dye-sensitized solar cells as a platinum-and transparent conducting oxide-free flexible counter electrode[J]. Electrochimica Acta, 2017,255:256-265.
[32] MAO X, SI Y, CHEN Y, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration[J]. RSC Advances, 2012, 2(32): 12216.
[33] TAI M H, GAO P, TAN B Y L, et al. Highly efficient and flexible electrospun carbon–silica nanofibrous membrane for ultrafast gravity-driven oil–water separation[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9393-9401.
[34]赵瑨云, 陈良壁. 碳热还原制备单晶TiC纳米纤维[J]. 化工新型材料, 2015, 43(8): 75-77.
ZHAO Jinyun, CHEN Liangbi. Single-crystalline TiC nanofibrs synthesized by carbothermal reduction[J]. New Chemical Materials, 2015, 43(8): 75-77.
[35]余煜玺, 陈勇, 吴晓云, 等. 用聚碳硅烷制备柔性疏水型碳化硅纤维毡[J]. 硅酸盐学报, 2014, 42(5): 661-666.
YU Yuxi, CHEN Yong, WU Xiaoyun, et al. Flexible and hydrophobic silicon carbide fibrous mats prepared from polycarbosilane [J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 661-666.
[36] XIE X, YIN X, ZHAI J, et al. The preparation of highly flexible mesoporous TiC/CNF film for flexible dye-sensitized solar cells[J]. Journal of Solid State Electrochemistry, 2017, 22: 1185–1195.
[37]韩玉芳, 张涛, 温广武. 碳纳米管-石墨烯-碳纳米纤维复合电极的制备及应用[J]. 水处理技术, 2018, 44(3): 21-25.
HAN Yufang, ZHANG Tao, WEN Guangwu. Prepartion and application of carbon nanotube-graphene-carbon nanofiber composite electrode [J]. Technology of Water Treatment, 2018, 44(3): 21-25.
[38]王挺, 郇恪, 邓冬梅, 等. 电纺丝法制备CuNi纳米粒子/碳纳米纤维电分析检测H2O2[J]. 分析试验室, 2019, 38(12): 1421-1426.
WANG Ting, HUAN Ke, DENG Dongmei, et al. Fabrication of CuNi nanoparticles/carbon nanofibers by electrospinning or H2O2 lectrochemical sensor[J]. Chinese Journal of Analysis Laboratory, 2019, 38(12): 1421-1426.
[39]MA C, LI Y, SHI J, et al. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching[J]. Chemical Engineering Journal, 2014, 249: 216-225.
[40] LIU J Y, WANG S P, YANG J M, et al. ZnCl2 activated electrospun carbon nanofiber for capacitive desalination[J]. Desalination, 2014 ,344: 446-453.
[41] LAI C, ZHOU Z, ZHANG L, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247(3): 134-141.
[42]陈仁忠.基于Zn/Co金属氧化物调控制备的纳米碳纤维储能研究[D]. 杭州:浙江理工大学, 2018.
CHEN Renzhong. Preparation and Energy Storage of Carbon Nanofibers Regulated by Zn/Co Metal Oxides[D]. Hangzhou:Zhejiang Sci-Tech University, 2018.
[43]周翠翠, 平中鑫, 于恩萌, 等. 静电纺丝碳纳米纤维膜的制备及性能研究[J]. 现代盐化工, 2019, 46(4): 47-48.
ZHOU Cuicui, PING Zhongxin, YU Enmeng, et al. Preparation and properties of electrospun carbon nanofiber films[J]. Modern Salt and Chemical Industry, 2019, 46(4): 47-48.
[44]刘江涛, 姜志浩, 张传玲. 镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维高活性析氧催化剂的研究[J]. 现代化工, 2019, 39(12): 89-93.
LIU Jiangtao, JIANG Zhihao, ZHANG Chuanling. Nickel-iron alloy nanoparticles embedded in nitrogen-doped carbon nanofiber as a high activity oxygen evolution catalyst[J]. Modern Chemical Industry, 2019, 39(12): 89-93.
[45]伍海明, 陈磊, 李翠玉. 碳纳米复合结构纤维膜吸附性能研究[J]. 天津纺织科技, 2018(1): 31-35.
WU Hhaiming, CHEN Lei, LI Cuiyu. Adsorption properties of carbon nanocomposite fiber film[J]. TianJing Textile Science and Technology, 2018(1): 31-35.
[46] DINH T, PHAN H P, NGUYEN T K, et al. Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare[J]. Journal of Materials Chemistry C, 2016,4(42): 10061-10068.
[47]BI S, DONG W, LAN B, et al. Flexible carbonic pen ink/carbon fiber paper composites for multifunctional switch-type sensors[J]. Elsevier Ltd, 2019, 124: 105452-105460.
[48] KIM J H, HWANG J Y, HWANG H R. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics[J]. Scientific Reports, 2018, 8(1): 1375-1386.
[49] SAEM S, FONG D, ADRONV, A. Carbon nanotubes; new findings from McMaster University update understanding of carbon nanotubes (stretchable and resilient conductive films on polydimethylsiloxane from reactive polymer-single-walled carbon nanotube complexes for wearable electronics)[J]. Nanotechnology Weekly, 2020,2(8): 4968-4973.
[50] XU T, DING Y, WANG Z, et al. Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor[J]. Journal of Materials Chemistry C, 2017, 5(39): 10288-10294.
[51]WU S, ZHANG J, LADANI R B, et al. Novel electrically conductive porous PDMS/Carbon nanofiber composites for deformable strain sensors and conductors[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14207-14215.

备注/Memo

备注/Memo:
收稿日期:2020-03-05
修回日期: 作者简介:刘伟红(1996—),女,硕士研究生,研究方向为柔性碳纳米纤维膜在二次电池中的应用
通信作者:熊杰,教授,jxiong@zstu.edu.cn
更新日期/Last Update: 2020-11-13