|本期目录/Table of Contents|

[1]王彩霞,刘元军.磁损耗型吸波材料的发展现状[J].丝绸,2021,58(2):021105.
 WANG Caixiaa,LIU Yuanjuna,b.Developments Status of Magnetic Loss Wave-absorbing Materials[J].Journal of Silk,2021,58(2):021105.
点击复制

磁损耗型吸波材料的发展现状(PDF)

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
58
期数:
2021年2期
页码:
021105
栏目:
研究与技术
出版日期:
2021-02-20

文章信息/Info

Title:
Developments Status of Magnetic Loss Wave-absorbing Materials
文章编号:
1001-7003(2021)02-0000-00
作者:
王彩霞 刘元军
1.天津工业大学 a.纺织科学与工程学院;b.先进纺织复合材料重点实验室,天津 300387;2.天津市先进纤维与储能技术重点实验室,天津300387
Author(s):
WANG Caixia1a LIU Yuanjun1ab2
(1a.College of Textile Science and Engineering; 1b.Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China; 2.Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, Tianjin 300387, China)
关键词:
磁性材料吸波剂复合材料电磁辐射研究进展
Keywords:
magnetic material wave-adsorbing agent composite material electromagnetic radiation research progress
分类号:
TS101.8
doi:
-
文献标志码:
A
摘要:
基于单一磁损耗型吸波材料存在密度大、吸收频带窄、阻抗匹配差等问题,文章介绍了磁性材料吸波机理及分类情况,简述了近年来磁性材料的国内外研究进展,并对其复合材料的制备方法进行归纳。通过将磁性材料与介电型吸波材料复合、调控磁性吸波复合材料结构、在磁性吸波材料表面涂覆包覆层、以其他金属部分取代铁氧体金属离子等方法,均能有效地提高复合材料吸波性能。但采用这些方法的制备工艺较为复杂,制备出的吸波材料仍存在吸收频带窄、吸收性能低等不足。针对现有问题,文章最后展望了磁性吸波材料未来的发展方向。
Abstract:
Based on the problems of single magnetic loss wave-absorbing material, such as high density, narrow absorption band and poor impedance matching, this paper briefly introduces the wave-absorbing mechanism and classification of magnetic materials, sketches the research progress of magnetic materials at home and abroad in recent years and summarizes the preparation methods of the composite materials. The wave-absorbing properties of composite materials can be effectively improved by synthesizing magnetic materials with dielectric wave-absorbing materials, adjusting the structure of magnetic wave-absorbing composite materials, coating the surface of the magnetic wave-absorbing materials with a coating layer and replacing part of the ferrite metal ions with other metal ions. However, the preparation processes of these methods are complex, and the prepared wave-absorbing materials still have some shortcomings, such as narrow absorption band and low absorbing capacity. In view of existing problems, we finally prospect the future development direction of wave-absorbing materials

参考文献/References:

[1]于永涛,王彩霞,刘元军,等. 吸波复合材料的研究进展[J]. 丝绸, 2019, 56(12): 50-58.
YU Yongtao, WANG Caixia, LIU Yuanjun, et al. Research progress of absorbing composite materials[J]. Journal of Silk, 2019, 56(12): 50-58.
[2]李庆,陈志萍,杨晓峰,等. 基于石墨烯吸波材料的研究进展[J]. 材料导报, 2015, 29(10): 28-35.
LI Qing, CHEN Zhiping, YANG Xiaofeng, et al. Research progress of wave absorbing materials based on graphene[J]. Materials Reports, 2015, 29(10): 28-35.
[3]于永涛,刘元军,赵晓明. 含石墨烯导电吸波复合材料的研究进展[J]. 丝绸, 2020, 57(4): 11-16.
YU Yongtao, LIU Yuanjun, ZHAO Xiaoming. Research progress of graphene-containing conductive wave absorbing composites [J]. Journal of Silk, 2020, 57(4): 11-16.
[4]温娇,丁志荣,张琰卿,等. 吸波涂层复合面料的制备及其吸波性能[J]. 纺织学报, 2014, 35(5):61-66.
WEN Jiao, DING Zhirong, ZHANG Yanqing, et al. Preparation and microwave absorbing property of composite fabric with microwave absorbing coating[J]. Journal of Textile Research, 2014, 35(5): 61-66.
[5]陈国红,周芳灵,赵丽平,等. 铁氧体磁性材料的吸波机理及改善吸波性能的研究进展[J]. 化工进展, 2015, 34(11): 3965-3969.
CHEN Guohong, ZHOU Fangling, ZHAO Liping, et al. Research progress in the absorption mechanism and improvement of the absorption performance of ferrite magnetic materials[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3965-3969.
[6]肖卫要,徐晋勇,高成,等. 吸波涂层材料的研究进展[J]. 中国胶粘剂, 2019(5): 53-56.
XIAO Weiyao, XU Jinyong, GAO Cheng, et al. Research progress of absorbing coating materials [J]. China Adhesives, 2019(5): 53-56.
[7]郭远征. 钡铁氧体基纳米无机纤维的研制[D]. 北京: 北京服装学院, 2010.
GUO Yuanzheng. Development to Fbarium Ferrite-Based Nano-Inorganic Fibers[D]. Beijing: Beijing Institute of Fashion, 2010.
[8]刘慧玲. 铁氧体复合纳米吸波剂的制备及其性能[D]. 兰州: 兰州理工大学, 2014.
LIU Huiling. Preparation and Properties of Ferrite Composite Nano-Absorbing Agent[D]. Lanzhou: Lanzhou University of Technology, 2014.
[9]程振宇. 尖晶石型磁性氧化物MeFe2O4(Me=Co、Ni)的合成与性能研究[D]. 昆明: 昆明理工大学, 2017.
CHENG Zhenyu. Study on Synthesis and Properties of Spinel-Type Magnetic Oxide MeFe2O4 (Me=Co,Ni)[D]. Kunming: Kunming University of Science and Technology, 2017.
[10]夏晓祥. 钴铁氧体、锶铁氧体复合物的制备及其磁性能和吸波性能的研究[D].合肥: 安徽工业大学, 2016.
XIA Xiaoxiang. Preparation of Cobalt Ferrite and Strontium Ferrite Composites and Study on Their Magnetic and Wave Absorbing Properties[D]. Hefei: Anhui University of Technology, 2016.
[11]韩宁. 铁氧体基复合材料的制备及其吸波性能的研究[D]. 西安: 陕西科技大学, 2017.
HAN Ning. Preparation of Ferrite Matrix Composites and Study on Their Absorbing Properties[D]. Xi’an: Shanxi University of Science and Technology, 2017.
[12] SUN Chang, CHENG Changfei, SUN Mei, et al. Facile synthesis and microwave absorbing properties of LiFeO2/ZnFe2O4 composite [J]. Journal of Magnetism and Magnetic Materials, 2019 ,482: 79-83.
[13] LEI Yiming, YAO Zhengjun, LIN Haiyan, et al. Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites [J]. Materials Letters, 2019,236: 456-459.
[14] QIAO Yue, XIAO Junping, JIA Qi, et al. Preparation and microwave absorption properties of ZnFe2O4/polyaniline/graphene oxide composite [J]. Results in Physics, 2019,13:102221.
[15] DONG Shenhui, LIN Chucheng, MENG Xianfeng. One-pot synthesis and microwave absorbing properties of ultrathin SrFe12O19 nanosheets[J]. Journal of Alloys and Compounds, 2019,783: 779-784.
[16]李阳. 磁铅石M型铁氧体的制备与磁性能研究[D]. 合肥: 安徽工业大学, 2017.
LI Yang. Study on Preparation and Magnetic Properties of M-type Ferrite of Lead Magnet[D]. Hefei: Anhui University of Technology, 2017.
[17] MENG Xianfeng, HAN Qiuxia, SUN Yujie, et al. Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite [J]. Ceramics International, 2019, 45(2): 2504-2508.
[18] HAN Qiuxia, MENG Xianfeng, LU Chunhua. Exchange-coupled Ni0.5Zn0.5Fe2O4/SrFe12O19 composites with enhanced microwave absorption performance[J]. Journal of Alloys and Compounds, 2018 ,768: 742-749.
[19]王超. 改性羰基铁粉复合材料的制备与吸波性能[D]. 哈尔滨: 哈尔滨工业大学,2008.
WANG Chao. Preparation and Microwave Absorption Properties of Modified Carbonyl Iron Powder Composites[D]. Harbin: Harbin Institute of Technology, 2008.
[20]王相元,钱鉴,伍瑞新,等. 微波吸收材料的分块设计方法[J]. 南京大学学报(自然科学版), 2001(5): 625-629.
WANG Xiangyuan, QIAN Jian, WU Ruixin, et al. Block design method of microwave absorbing materials [J]. Journal of Nanjing University (Natural Science), 2001(5): 625-629.
[21] DUAN Wenju, LI Xuandong, WANG Ying, et al. Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties [J]. Applied Surface Science, 2018,427: 594-602.
[22]罗平,刘朝辉,陶睿,等. 片状羰基铁/聚氨酯双层吸波涂层的设计及其电磁特性[J]. 电镀与涂饰, 2018, 37(6): 247-253.
LUO Ping, LIU Chaohui, TAO Rui, et al. Design and electromagnetic properties of flake carbonyl iron/polyurethane double layer wave absorbing coatings[J]. Electroplating & Finishing, 2018, 37(6): 247-253.
[23] CHEN Chihchia, LAING Wenfan, NIEN Yuhsun, et al. Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites[J]. Materials Research Bulletin, 2017,96: 81-85.
[24] LI Cuiping, SUI Jing, ZHANG Ziqiu, et al. Microwave-assisted synthesis of tremella-like NiCo/C composites for oxidative ability and microwave absorption properties efficient broadband electromagnetic wave absorption at 2–40 GHz[J]. Chemical Engineering Journal, 2019,375:122017.
[25] WANG Chao, HAN Xijiang, XU Ping, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98(7):217.
[26]孙星,盛雷梅,方旸皓,等. 单壁碳纳米管-CoFe2O4双层复合材料的微波吸收特性[J]. 复合材料学报, 2018,35(5):1279-1287.
SUN Xing, SHENG Leimei, FANG Yanghao, et al. Microwave absorption properties of single-walled carbon nanotubes-CoFe2O4 bilayer composites[J]. Acta Materiae Compositae Sinica,2018,35(5): 1279-1287.
[27]周小文,揣丹,朱代漫,等. 石墨烯/NiZn铁氧体软磁复合材料的制备及吸波性能的研究[J]. 金属功能材料, 2019,26(2):6-10.
ZHOU Xiaowen, CHUAI Dan, ZHU Daiman, et al. Study on preparation and microwave absorbing properties of graphene/NiZn ferrite soft magnetic composites[J].Metallic Functional Materials,2019, 26(2):6-10.
[28]孙银凤,包琳,包桂枝,等. La掺杂Z型钡铁氧体/石墨烯/聚苯胺复合材料吸波性能研究[J]. 稀土, 2019, 40(1): 52-58.
SUN Yinfeng, BAO Lin, BAO Guizhi, et al. Microwave absorption properties of La-doped Z-type barium ferrite/graphene/polyaniline composites[J]. Chinese Rare Earths, 2019, 40(1): 52-58.
[29]赵成云. 还原石墨烯/磁性纳米复合材料的制备及微波吸收性能的研究[D]. 马鞍山: 安徽工业大学, 2018.
ZHAO Chengyun. Preparation and Microwave Absorption Properties of Reduced Graphene/Magnetic Nanocomposites[D]. Ma Anshan: Anhui University of Technology, 2018.
[30] LI Jinshuh, HSU Tingchia, HWANG Chyiching, et al. Preparation and characterization of microwave absorbing composite materials with GSs or FeCo/GS composites[J]. Materials Research Bulletin, 2018,107: 218-224.
[31] SUN Jie, WANG Liming, YANG Qun, et al. Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating[J]. Progress in Organic Coatings, 2020,141:105552.
[32] GAO Meimei, ZHAO Yun, WANG Shanshan, et al. Preparation of pod-like 3D Ni0.33Co0.67Fe2O4@RGO composites and their microwave absorbing properties[J]. Ceramics International, 2019, 45(6): 7188-7195.
[33] NI Xiang, HE Zhuangzhang, LIU Xi, et al. Ionic liquid-assisted solvothermal synthesis of hollow CoFe2O4 microspheres and their absorbing performances[J]. Materials Letters, 2017 ,193: 232-235.
[34]尚涛. 新型铁氧体吸波材料的设计合成与性能研究[D]. 呼和浩特: 内蒙古大学, 2018.
SHANG Tao. Design Synthesis and Properties of New Ferrite Absorbing Materials[D]. Hohhot: Inner Mongolia University, 2018.
[35] CHEN Wei, ZHU Xixi, LIU Qingyun, et al. Preparation of urchin-like strontium ferrites as microwave absorbing materials[J]. Materials Letters, 2017,209: 425-428.
[36] FU Min, ZHU Zitong, ZHOU Yuji, et al. Multifunctional pompon flower-like nickel ferrites as novel pseudocapacitive electrode materials and advanced absorbing materials[J]. Ceramics International, 2020, 46(1): 850-856.
[37] WANG Mengqi, LIN Ying, YANG Haibo, et al. A novel plate-like BaFe12O19@MoS2 core-shell structure composite with excellent microwave absorbing properties[J]. Journal of Alloys and Compounds, 2020 ,817:153265.
[38] CHEN Qiuli, LI Liya, WANG Zhilong, et al. Synthesis and enhanced microwave absorption performance of CIP@ SiO2@Mn0.6Zn0.4Fe2O4 ferrite composite[J].2019 ,779:720-727.
[39]韩铮,曾国勋,熊小敏. TiO2包覆对不同粒径羰基铁粉吸波性能的影响[J]. 材料科学与工程学报, 2017, 35(5): 708-712.
HAN Zheng, ZENG Guoxun, XIONG Xiaomin. The effect of TiO2 coating on the microwave absorption properties of carbonyl iron powder with different particle sizes [J]. Journal of Materials Science and Engineering, 2017, 35(5): 708-712.
[40]刘晓彤,曾元松,韦国科,等. SiO2包覆羰基铁粉电磁特性及吸波性能研究[J]. 航空制造技术, 2019, 62(22): 82-87.
LIU Xiaotong, ZENG Yuansong, WEI Guoke, et al. Study on electromagnetic properties and microwave absorbing properties of carbonyl iron powder coated with SiO2[J]. Aeronautical Manufacturing Technology, 2019, 62(22): 82-87.
[41]程艳奎,孟平原,胡洋,等. 掺杂M型钡铁氧体吸波性能研究[J]. 安全与电磁兼容, 2018(6): 57-59.
CHENG Yankui, MENG Pingyuan, HU Yang, et al. Study on microwave absorbing properties of M-type barium ferrite[J]. Safety & EMC, 2018(6): 57-59.
[42] QIAN Kun, YAO Zhengjun, LIN Haiyan, et al. The influence of Nd substitution in Ni–Zn ferrites for the improved microwave absorption properties[J]. Ceramics International, 2020,46(1): 227-235.
[43] CHO Hanshin, KIM S. The effect of Zn and Ni substitution on magnetic and microwave absorbing properties of Co2W hexagonal ferrites[J]. Ceramics International, 2019, 45(7): 9406-9409.

备注/Memo

备注/Memo:
基金项目:天津市自然科学基金重点项目(18JCZDJC99900);中国博士后科学基金特别资助项目(2019TQ0181);中国博士后科学基金面上项目(2019M661030);安徽省纺织结构复合材料国际联合研究中心开放基金(2021ACTC04);国家级大学生创新创业训练计划项目(201910058004)
收稿日期:2020-04-03
作者简介:王彩霞(1999—),女,2017级本科生,专业方向为防护材料的制备及性能研究
通信作者:刘元军,副教授,liuyuanjunsd@163.com
更新日期/Last Update: 2021-01-13