|本期目录/Table of Contents|

[1]明津法,黄晓卫,宁 新,等.丝素蛋白材料制备及应用进展[J].丝绸,2021,58(2):021104.
 MING Jinfa HUANG Xiaowei,NING Xin PAN Fukui,ZUO Baoqi.Preparation and pplication of Silk Fibroin Materials[J].Journal of Silk,2021,58(2):021104.
点击复制

丝素蛋白材料制备及应用进展(PDF)

《丝绸》[ISSN:1001-7003/CN:33-1122/TS]

卷:
58
期数:
2021年2期
页码:
021104
栏目:
研究与技术
出版日期:
2021-02-20

文章信息/Info

Title:
Preparation and pplication of Silk Fibroin Materials
文章编号:
1001-7003(2021)02-0000-00
作者:
明津法黄晓卫 宁 新 潘福奎左保齐
1. 青岛 a.纺织服装非织造材料与产业用纺织品创新研究院青岛 266071;2. 山东省特型非织造材料工程研究中心,青岛 266071;3. 苏州大学 纺织服装学院现代丝绸国家工程实验室,苏州 215021
Author(s):
MING Jinfa12 HUANG Xiaowei1 NING Xin12 PAN Fukui1 ZUO Baoqi3
1a. College of Textile & Clothing;1b. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao 266071, China; 2. Shandong Special Nonwoven Materials Engineering Research Center, Qingdao 266071, China; 3a. College of Textile and Clothing Engineering;3b.National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215021, China
关键词:
湿法纺丝蚕丝丝素蛋白智能可穿戴生物医用
Keywords:
wet spinning silk silk fibroin intelligent wearable biomedicine
分类号:
TS141;TQ340.643
doi:
-
文献标志码:
A
摘要:
为深入了解丝素蛋白材料的制备技术及应用研究现状,介绍了湿法纺丝、干法纺丝等制备丝素蛋白纤维类材料的制备技术及纤维性能特点,发现湿法纺丝中纺丝液浓度普遍低于干法纺丝,且湿法纺丝过程中凝固浴对材料性能影响波动较大。冷冻干燥法、盐析法、发泡法等制备丝素蛋白支架类材料,冷冻干燥法获得丝素蛋白支架孔隙率可高达99%。同时,对不同制备技术获得的丝素蛋白材料性能进行分析综述了丝素蛋白材料在智能纺织品、生物医药、光电学器件等领域应用研究。指出可通过再生制备技术进行结构设计和材料功能化,可提升蚕丝的附加值和拓宽其应用领域,实现蚕丝产品的多元化应用。
Abstract:
In order to deeply understand the research status of the preparation and application of silk fibroin materials, this paper introduces the preparation techniques of silk fibroin fibers, such as wet spinning and dry spinning and the properties of such fibers. It is found the concentration of spinning solution in wet spinning is generally lower than that in dry spinning, and the coagulation bath in wet spinning has a great impact on the properties of materials. Silk fibroin?scaffolds are prepared by freeze-drying, salting out and foaming etc. The porosity of silk fibroin scaffolds obtained by freeze-drying can be up to 99%. At the same time, the properties of silk fibroin materials obtained by different preparation techniques are analyzed. The applications of silk fibroin materials in intelligent textiles, biomedicine and optoelectronic devices, etc. are summarized. It is pointed out that the structural design and functionalization of silk by regenerative preparation technology can enhance the additional value of silk and broaden its application fields, so as to realize the diversified application of silk products.

参考文献/References:

[1] SONG P, TAO J, HE X M, et al. Silk inspired stretchable fiber shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics[J]. Chemical Engineering Journal, 2020,386(15):124024.
[2] WANG C Y, LI X, GAO E L, et al. Carbonized silk fabric for ultrastretchable highly sensitive and wearable strain sensors[J]. Advanced Materials, 2016,38(31): 6640-6648.
[3] NA D, CHOI J, LEE J, et al. Commercial silk based electronic yarns fabricated using microwave irradiation[J]. ACS Applied Materials & Interfaces, 2019,11(30): 27353-27357.
[4] JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003,424(6952): 1057-1061.
[5] ZHANG F, LU Q, YUE X X, et al. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2 formic acid solvent[J]. Acta Biomaterialia, 2015,12: 139-145.
[6]魏伟. 再生丝素蛋白水溶液的干法纺丝及后处理研究[D]. 上海: 东华大学, 2011.
WEI Wei. Studies on Dry Spinning of Regenerated Silk Fibroin Aqueous Solution and Post Treatment of the Resultant Fibers[D]. Shanghai: Donghua University, 2011.
[7]林永佳,杨董超,张佩华,等. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(7): 13-18.
LIN Yongjia, YANG Dongchao, ZHANG Peihua, et al. Preparation and properties of regenerated silk fibroin acellular dermal matrix blended nanofiber membrane[J]. Journal of Textile Research, 2019, 40(7): 13-18.
[8] KINAHAN M E, FILIPPIDI E, KOSTER S, et al. Tunable silk using microfluidics to fabricate silk fibers with controllable properties[J]. Biomacromolecules, 2011,12(5): 1504-1511.
[9] KOEPPEL A, HOLLAND C. Progress and trends in artificial silk spinning a systematic review[J]. ACS Biomaterials Science & Engineering, 2017,3(3): 226-237.
[10] PENG Q F, SHAO H L, HU X C, et al. Microfluidic dry spinning and characterization of regenerated silk fibroin fibers[J]. Journal of Visualized Experiments, 2017(127):56271.
[11]吴惠英,左保齐. 氯化钙甲酸溶解体系再生丝素长丝的制备及其性能[J]. 纺织学报, 2016, 37(2): 1-6.
WU Huiying, ZUO Baoqi. Preparation and properties of regenerated silk fibroin filaments using CaCl2 formid acid system[J]. Journal of Textile Research 2016, 37(2): 1-6.
[12] YAN J P, ZHOU G Q, KNIGHT D P, et al. Wet spinning of regenerated silk fiber from aqueous silk fibroin solution discussion of spinning parameters[J]. Biomacromolecules, 2010,11(1): 1-5.
[13] NG P F, LEE K I, MENG S F, et al. Wet spinning of silk fibroin based core sheath fibers[J]. ACS Biomaterials Science & Engineering, 2019,5(6): 3119-3130.
[14] TRIPATHI A, RUTKEVICIUS M, BOSE A, et al. Experimental and predictive description of the morphology of wet spun fibers[J]. ACS Applied Polymer Materials, 2019,1(6): 1280-1290.
[15]高艳菲,明津法,邓春闽,等. 再生丝素纤维的湿法纺丝及其交联改性研究[J]. 丝绸, 2012, 49(4): 10-14.
GAO Yanfei, MING Jinfa, DENG Chunmin, et al. Wet spinning of the regenerated silk fibroin fibers and its cross linking modification research[J]. Journal of Silk, 2012, 49(4): 10-14.
[16] HU X J, LI J G, BAI Y X. Fabrication of high strength graphene regenerated silk fibroin composite fibers by wet spinning[J]. Materials Letters, 2017,194: 224-226.
[17] LI X R, MING J F, NING X. Wet spun conductive silk fibroin polyaniline filaments prepared from a formic acid shell solution[J]. Journal of Applied Polymer Science, 2019,136(9):47127.
[18] YAZAWA K, MALAY A D, IFUKU N, et al. Combination of amorphous silk fiber spinning and postspinning crystallization for tough regenerated silk fibers[J]. Biomacromolecules, 2018,19(6): 2227-2237.
[19] FRYDRYCH M, GREENHALGH A, VOLLRATH F. Artificial spinning of natural silk threads[J]. Scientific Reports, 2019,9(1):247-255.
[20] ZHANG C, ZHANG Y P, SHAO H L, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solution[J]. ACS Applied Materials & Interfaces, 2016,8(5): 3349-3358.
[21] YUE X X, ZHANG F, WU H Y, et al. A novel route to prepare dry-spun silk fibers from CaCl2 formic acid solution[J]. Materials Letters, 2014,128: 175-178.
[22] PENG Q F, SHAO H L, HU X C, et al. Role of humidity on the structures and properties of regenerated silk fibers [J]. Progress in Natural Science Materials International, 2015,25(5): 430-436.
[23] ZHANG C, ZHANG Y P, SHAO H L, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solution[J]. ACS Applied Materials & Interfaces, 2016,8(5): 3349-3358.
[24] WANG Q, WANG C Y, ZHANG M C, et al. Feeding single walled carbon nanotubes or graphene to silkworms for reinforced silk fibers[J]. Nano Letters, 2016,16: 6695-6700.
[25] PENG Q F, SHAO H L, HU X C, et al. The development of fibers that mimic the core-sheath and spindle knot morphology of artificial silk using microfluidic devices[J]. Macromolecular Materials and Engineering, 2017,302(10):201700102.
[26] KONWARH R, GUPTA P, MANDAL B B. Silk microfluidics for advanced biotechnological applications a progressive review [J]. Biotechnology Advances, 2016,34(5): 845-858.
[27] MARTEL A, BURGHAMMER M, DAVIES R, et al. A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small and wide angle X-ray scattering[J]. Biomicrofluidics, 2008,2(2): 24104.
[28] LUO J, ZHANG Y P, HUANG Y, et al. A bio-inspired microfluidic concentrator for regenerated silk fibroin solution [J]. Sensors and Actuators B Chemical, 2012,162(1): 435-440.
[29] LI D, JACOBSEN M M, RIM N G, et al. Introducing biomimetic shear and ion gradients to microfluidic spinning improves silk fiber strength [J]. Biofabrication, 2017,9(2): 025025.
[30] BETTINGER C J, CYR K M, MATSUMOTO A, et al. Silk fibroin microfluidic devices [J]. Advanced Materials, 2007,19(19): 2847-2850.
[31] KINAHAN M E, FILIPPIDI E, KOSTER S, et al. Tunable silk using microfluidics to fabricate silk fibers with controllable properties[J]. Biomacromolecules, 2011,12(5): 1504-1511.
[32]雷鸣,张逸,焦晨璐,等. 微流体纺丝制备丝素纳米银/PVA共混纤维的研究[J]. 丝绸, 2018, 55(2).
LEI Ming, ZHANG Yi, JIAO Chenlu, et al. Study on preparation of silk fibroin stabilized silver nanoparticles PVA composite microfibers by microfluidic spinning[J]. Journal of Silk, 2018, 55(2):1-7.
[33]殷丽华,牟星,余占海,等. 丝素蛋白及其复合支架制备方法的研究进展[J]. 材料导报, 2013, 27(17): 110-112.
YIN Lihua, MU Xing, YU Zhanhai, et al. Research development in preparation of silk fibroin and its composite scaffolds[J]. Materials Reports, 2013, 27(17): 110-112.
[34] NAZAROV R, JIN H J, KAPLAN D L. Porous 3D scaffolds from regenerated silk fibroin[J]. Biomacromolecules, 2004,5(3): 718-726.
[35] LI Z H, WANG L, DAI H L, et al. Fabrication characterization and in vitro evaluation of biomimetic silk fibroin porous scaffolds via supercritical CO2 technology[J]. The Journal of Supercritical Fluids, 2019,150: 86-93.
[36] WANG C Y, XIA K L, ZHANG Y Y, et al. Silk based advanced materials for soft electronics[J]. Accounts of Chemical Research, 2019,52(10): 2916-2927.
[37]李胜优,刘镓榕,文豪,等. 蚕丝基可穿戴传感器的研究进展[J]. 物理学报, 2020, 69(17): 130-142.
LI Shengyou, LIU Jiarong, WEN Hao, et al. The recent advances of silk based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 130-142.
[38] YIN Z, JIAN M Q, WANG C Y, et al. Splash resistant and light weight silk sheathed wires for textile electronics[J]. Nano Letters, 2018,18: 7085-7091.
[39] WANG C Y, XIA K L, ZHANG M C, et al. An all silk derived dual mode E-skin for simultaneous temperature pressure detection [J]. ACS Applied Materials & Interfaces, 2017,9(45): 39484-39492.
[40] YE C, REN J, WANG Y L, et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles[J]. Matter, 2019,1(5): 1411-1425.
[41]毛翠萍. 纳米功能化蚕丝织物的制备及其在可穿戴领域的应用研究[D]. 重庆: 西南大学, 2016.
MAO Cuiping. Nanomaterial Functionalized Silk and Its Application in Wearable Electronics[D]. Chongqing: Southwest University, 2016.
[42] PANDEY V, HAIDER T, JAIN P, et al. Silk as a leading edge biological macromolecule for improved drug delivery[J]. Journal of Drug Delivery Science and Technology, 2020,55:101294.
[43] XU Z P, SHI L Y, YANG M Y, et al. Preparation and biomedical applications of silk fibroin nanoparticles composites with enhanced properties a review[J]. Materials Science and Engineering C, 2019,95: 302-311.
[44] KUNDU B, KURLAND N E, BANO S, et al. Silk protein for biomedical applications bioengineering perspectives[J]. Progress in Polymer Science, 2014,39(2): 251-267.
[45] KAPOOR S, KUNDU S C. Silk protein based hydrogels promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016,31: 17-32.
[46] MENG L, SHAO C Y, CUI C, et al. Autonomous self healing silk fibroin injectable hydrogels formed via surfactant free hydrophobic association[J]. ACS Applied Materials & Interfaces, 2020,12(1): 1628-1639.
[47] MUTHUMANICKKAM A, SUBRAMANIAN S, SATHIYARAJ M, et al. Development of herb based Nigella sativa eri silk nanofibrous mat for biomedical applications[J]. Materials Today: Proceedings, 2020,22(3): 585-588.
[48] RAHO R, NGUYEN N Y, ZHANG N Y, et al. Photo-assisted green synthesis of silver doped silk fibroin carboxymethyl cellulose nanocomposite hydrogels for biomedical applications[J]. Materials Science and Engineering C, 2020,107:110219.
[49] LIN S H, WANG Z, CHEN X Y, et al. Ultrastrong and highly sensitive fiber microactuators constructed by force reeled silks[J]. Advanced Science, 2020, 7(6):201902743.
[50] SENCADAS V, GARVEY C, MUDIE S, et al. Electroactive properties of electrospun silk fibroin for energy harvesting applications[J]. Nano Energy, 2019,66:104106.
[51] SINGH M, BOLLELLA P, GORTON L, et al. Conductive and enzyme like silk fibers for soft sensing application[J]. Biosensors and Bioelectronics, 2020,150:111859.
[52] XU Z Q, LIANG M W, HE X H, et al. The preparation of carbonized silk cocoon Co graphene composite and its enhanced electromagnetic interference shielding performance[J]. Composites Part A Applied Science and Manufacturing, 2019,119: 111-118.
[53] LAWRENCE B D, GOLOMB M C, GEORGAKOUDI I, et al. Bioactive silk protein biomaterial systems for optical devices[J]. Biomacromolecules, 2008,9(4): 1214-1220.
[54] PAL R K, KURLAND N E, WANG C Z, et al. Biopatterning of silk proteins for soft micro-optics[J]. ACS Applied Materials & Interfaces, 2015,7(16): 8809-8816.
[55] LEE M, JEON H, KIM S. A highly tunable and fully biocompatible silk nanoplasmonic optical sensor[J]. Nano Letters, 2015,15(5): 3358-3363.
[56] BUCCIARELLI A, MULLONI V, MANIGLIO D, et al. A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices[J]. Optical Materials, 2018,78: 407-414.

备注/Memo

备注/Memo:
基金项目:中国博士后科学基金2016M592141);山东省博士后科学基金201603067)
收稿日期:2020-07-23
作者简介:明津法1984—),男,副教授,主要丝蛋白生物医用材料、非织造新材料开发
更新日期/Last Update: 2021-01-13